Fourth Semester B.E. Degree Examination, Dec.2013/Jan.2014

Advanced Mathematics - II

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$. (06 Marks)
 - b. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are direction cosines of two lines then prove that the angle between them is $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$. (07 Marks)
 - c. Find the equation of the plane through the interaction of the planes 2x + 3y z = 5 and x 2y 3z = -8, also perpendicular to the plane x + y z = 2. (07 Marks)
- 2 a. Prove that the equation of the plane in the intercept form is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (06 Marks)
 - b. Find the equation of the plane through the points (1, -2, 2) (-3, 1, -2) and perpendicular to the plane 2x y z + 6 = 0. (07 Marks)
 - c. Find the angle between the following lines:

$$\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-3}{2}$$
 and $\frac{x+1}{2} = \frac{y-3}{-1} = \frac{z-1}{0}$ (07 Marks)

- 3 a. Find the sine of the angle between $\vec{a} = 2\vec{i} 2\vec{j} + \vec{k}$ and $\vec{b} = \vec{i} 2\vec{j} + 2\vec{k}$. (06 Marks)
 - b. Find the value of λ if the vectors $\overline{a} = 4\overline{i} + 6\overline{j} + 2\overline{k}$, $\overline{b} = 3\overline{i} + 10\overline{j} + 5\overline{k}$ and $\overline{c} = -4\overline{i} + 5\overline{j} + \lambda\overline{k}$ are coplanar. (07 Marks)
 - c. Prove the following:

i)
$$(3\overline{a} - 2\overline{b}) \times (4\overline{a} + 2\overline{b}) = 14(\overline{a} + \overline{b})$$

ii)
$$(2\overline{a} + 3\overline{b}) \times (\overline{a} + 4\overline{b}) = 5(\overline{a} + \overline{b})$$
 (07 Marks)

- 4 a. A particle moves along the curve $\vec{r} = (t^3 4t)\vec{i} + (t^2 + 4t)\vec{j} + (8t^2 3t^3)\vec{k}$. Find the velocity and acceleration at t = 1 and also find their magnitude. (06 Marks)
 - b. Find the unit normal vector to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2). (07 Marks)
 - c. Find the directional derivative of x^2yz^3 at (1, 1, 1) in the direction of $\overline{i} + \overline{j} + 2\overline{k}$ (07 Marks)
- 5 a. Find div \vec{F} and curl \vec{F} , where $\vec{F} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$. (06 Marks)
 - b. Prove that curl grad $\phi = 0$. (07 Marks)
 - Find the constants a, b, c such that the vector $\vec{F} = (x + y + az)\vec{i} + (x + cy + 2z)\vec{k} + (bx + 2y z)\vec{j}$ is irrotational. (07 Marks)
- 6 Find the Laplace transform of the following:
 - a. sin 4t cos 3t
 - b. cos hat
 - c. $t e^{-t} \sin t$
 - d. $\frac{1-\cos t}{t}$ (20 Marks)

MATDIP401

7 Find the inverse Laplace transform of

a.
$$\log\left(\frac{s+1}{s-1}\right)$$
 (06 Marks)

b.
$$\frac{s+1}{s^2+2s+2}$$
 (07 Marks)

c.
$$\frac{s}{(s+1)(s+2)(s-3)}$$
 (07 Marks)

- 8 a. By applying Laplce transforms, solve the differential equation $\frac{d^5y}{dt^2} + 5\frac{dy}{dt} + 6y = 5e^{2t}$ subjected to the conditions y(0) = y'(0) = 0. (10 Marks)
 - b. Solve the simultaneous equations $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$ using Laplace transforms. Given that x = 1, y = 0 when t = 0.

* * * * *